News

  • 0
  • 0

Titanium Nitride (TiN) is an extremely hard ceramic material

Under the spread of the new crown epidemic, after Americans experienced life and death, they set off the largest "resignation wave" in history, and the number of resignations broke the highest record since statistics began in 2000. Since April this year, more than 4 million people in the United States have voluntarily resigned each month. In August, the number of resignations exceeded 4.27 million, and in November, it rose to 4.4 million. The operation of society is linked. The large number of departures in the United States has led to a large shortage of labor; and the shortage of a large number of labor has directly led to the supply chain crisis in the United States; the supply chain crisis has directly affected prices and prices in the United States. The economy has a direct effect on people's lives.
The economic downturn will affect the market demand for Titanium Nitride TiN.

Overview of Titanium Nitride TiN

Titanium nitride TiN (sometimes called Tinite) is an extremely hard ceramic material commonly used as a coating for titanium alloys, steel, carbide and aluminum parts to improve the surface properties of the substrate.

{xunruicms_img_title}

As a thin coating, TiN is used to harden and protect cutting and sliding surfaces, for decorative purposes (due to its golden appearance), and as a non-toxic exterior for medical implants. In most applications, a coating of less than 5 microns (0.00020 inches) is applied.

TiN has a Vickers hardness of 1800–2100, an elastic modulus of 251 GPa, a thermal expansion coefficient of 9.35 × 10-6 K-1, and a superconducting transition temperature of 5.6 K. In normal atmosphere, TiN oxidizes at 800 °C. TiN is brown in color and golden when used as a coating. According to laboratory tests, it is chemically stable at 20°C, but it is slowly attacked by concentrated acid solutions as the temperature increases. The coefficient of friction of TiN to another TiN surface (unlubricated) ranges from 0.4 to 0.9, depending on the substrate and surface finish. Typical TiN formation has a NaCl-type crystal structure with a stoichiometric ratio of about 1:1; however, TiN x compounds with x ranging from 0.6 to 1.2 are thermodynamically stable. TiN becomes superconducting at low temperature, and the critical temperature of single crystal is as high as 6.0 K. Superconductivity in thin-film TiN has been extensively studied, and its superconductivity properties vary from sample preparation to complete suppression of superconductivity at the superconductor-insulator transition. The TiN film was cooled to near absolute zero, turning it into the first known superinsulator, with a sudden 100,000-fold increase in resistance.

Application of Titanium Nitride TiN

A well-known use of TiN coatings is for edge retention and corrosion resistance in machine tools such as drills and milling cutters, often increasing their lifespan by a factor of three or more. Due to the metallic gold color of TiN, it is used to decorate the coating of costume jewelry and automotive trim. TiN is also widely used as a top coat, typically on nickel (Ni) or chrome (Cr) plated substrates for consumer sanitary equipment and door hardware. As a coating, it is used in aerospace and military applications to protect the sliding surfaces of bicycle and motorcycle suspension forks and the shock shafts of radio-controlled automobiles. TiN is also used as a coating for the moving parts of many rifles and semi-automatic firearms. Protective coating as it is very durable. In addition to being durable, it is also very smooth, making it very easy to remove carbon deposits. TiN is non-toxic, complies with FDA guidelines, and has applications in medical devices such as scalpel blades and orthopedic bone saw blades, where sharpness and edge retention are important. TiN coatings are also used to implant prostheses (especially hip replacement implants) and other medical implants.

Although less obvious, TiN films are also used in microelectronics, where they act as conductive connections between active devices and metal contacts used to operate circuits, while acting as a diffusion barrier to prevent metal from diffusing into silicon. In this case, TiN is classified as a "barrier metal" (resistivity ~25 µΩ cm), although it is clearly a ceramic from a chemical or mechanical behavioral point of view. Recent chip designs using 45 nm technology and beyond also use TiN as the "metal" to improve transistor performance. Combined with gate dielectrics with higher dielectric constants (such as HfSiO) compared to standard SiO 2, gate lengths can be reduced while having low leakage, higher drive currents, and equal or better threshold voltages. In addition, TiN films are currently being considered for coating zirconium alloys for fault-tolerant nuclear fuels. Due to their high biostability, TiN layers can also be used as electrodes in bioelectronic applications, such as in smart implants or in vivo biosensors that must withstand severe corrosion caused by bodily fluids. TiN electrodes have been used in subretinal prosthesis projects as well as in biomedical microelectromechanical systems (BioMEMS).

Titanium Nitride TiN Price

The price of titanium nitride TiN products will change randomly with the production cost, transportation cost, international situation, market supply and demand and other factors of titanium nitride TiN products. Tanki New Materials Co., Ltd. aims to help various industries and chemical wholesalers find high-quality products, customized services, low-cost nanomaterials and chemicals by providing a full range of customized solutions. If you are looking for Titanium Nitride TiN products, please feel free to send an inquiry to get the latest Titanium Nitride TiN prices.

Titanium Nitride TiN Supplier

As a global titanium nitride supplier, Tanki New Materials Co., Ltd. has extensive experience in the performance, application and cost-effective manufacturing of advanced and engineered materials. The company has successfully developed a series of powder materials (titanium nitride, silicon nitride, titanium nitride, etc.) high-purity targets, functional ceramics and structural devices, and provides OEM services.

Technical Parameter of Titanium Nitride TiN powder:
Product NameMFPurityParticle SizeSpecific Surface AreaVolume DensityCrystal FormColor
( m2/g )( g/cm3 )
Titanium NitrideTiN99%1-3um, 5-10um7.39 0.19SphericalGray-black
Chemical Composition of Titanium Nitride TiN powder:
TiNNOCFeAlCaSiNi
99.50%21.50%0.6-1.2%0.10%0.02%0.01%0.01%0.30%0.30%


New Delhi: India's Oil Ministry recently conveyed its intention to five national oil companies including Indian Oil Corp and Bharat Petroleum Resources LTD to assess the possibility of buying shares in Russian oil projects sold by European and American oil majors.  

Bp announced it would give up its 19.75% stake in Rosneft, the Russian oil company.  ExxonMobil said on March 1 that it would exit about $4 billion in assets and terminate all of its Russian operations, including the Sakhalin-1 project in Russia's far East.  

India's oil ministry has asked the overseas investment arm of India's Oil and Gas Corporation to consider buying ExxonMobil's 30 percent stake in the Sakhalin 1 project in Russia's far East. ExxonMobil is the operator of the project and Indian companies already have a 20 percent stake in the project.

Because of the ever-changing international situation, the supply and prices of international bulk Titanium Nitride TiN are still very uncertain.

Inquiry us

Our Latest News

Introduction to Titanium Carbide TiC Powder

A Brief Introduction Titanium Carbide TiC Powder Titanium carbide, also known as TiC is a well-known transition metal carbide with NaCl-type cubic structure. It has high melting point, high hardness and a high Young's modulus. excellent chemical sta…

What is Aluminum Nitride

What is Aluminum Nitride? Popular for its excellent energy conductivity and electrically insulating qualities, aluminum nitride is an excellent material for making semiconductors. In the field of light emitter technology, it can also be employed as…

Application of graphene in batteries

Affectation of graphene to batteries Graphene is a molecule with many applications. employed in a myriad of different applications including batteries. It has unique properties, like high conductivity, excellent mechanical properties, and superb ele…